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Econometric Assessment of Research Programs:  A Bayesian Approach 

 

Abstract 

 

Effective research-project assessment typically is impeded by project variety.  In particular, 

bibliometric approaches to science assessment tend to offer little information about the content 

of the projects examined.  We introduce here a new approach – based on Bayesian theory – of 

econometrically evaluating the factors affecting scientific discovery, and use the method to 

assess a biological research program comprised of numerous heterogeneous projects.  Our 

knowledge metric not only flexibly accommodates project variety but accounts for information 

in “failed” as well as “successful” studies.  Using a mean-absolute-deviation utility functional 

form to measure new scientific knowledge, we decompose knowledge gain into a mean-surprise 

and statistical-accuracy effect.  The two effects are econometrically examined independently, 

and then combined into the net knowledge production function.  Research FTE and distance to 

study site have statistically significant but moderate effects on the amount by which research 

shifts the prediction of scientific outcome.  However, scientist education powerfully improves 

the research study’s predictive accuracy or precision, a one-percent boost in the average 

investigator’s formal schooling improving precision by 4.3 percent.  Largely on the basis of that 

precision effect, increasing returns to research project scale are evident.  

 

Keywords:  Bayes Rule, knowledge production, project assessment, science assessment 
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Econometric Assessment of Research Programs:  A Bayesian Approach 

 

 

Research administrators are continually asked to assess not only the significance of 

research project outcomes but their costs, which largely are determined by the effectiveness with 

which projects are designed and managed.  The great volume and variety of projects under an 

administrator's purview, however, typically frustrate such assessment.  The volume of projects 

discourages a study-by-study analysis of their findings.  The variety of projects complicates the 

linkages an administrator might wish to establish between the knowledge gained in a project and 

the ways in which resources have been expended on it. 

The most common way to try to circumvent such volume and variety problems is to 

regress studies’ publication or patent counts against study aspects, such as study expenditure and 

topic area, that might influence those counts (Pardey 1989, Jaffe 1989, Hall, Jaffe, and 

Trajtenberg 2000).  However, this bibliometric approach is fraught with difficulties.  Publication, 

patent, and citation rates themselves contain little clue about the associated research discoveries 

themselves.  They substantially lag the study’s completion and – still more – the expenditures of 

its research effort.  They fail to include many media that researchers employ to communicate 

their findings.  And they are ill-suited to reflect the amount of knowledge a given study 

represents.  Perhaps more importantly, publication, citation, or patent-rate datasets usually offer 

little corresponding information about study research designs, management practices, personnel 

or capital resources, or environmental conditions.  Yet it is in the correspondences between such 

research inputs and outputs that the administrator is precisely interested. 

To provide an improved vehicle for research program assessment, we introduce here a 

new approach – based on Bayesian theory – of econometrically evaluating the factors affecting 

scientific discovery.  We apply the method to the assessment of a biological research program 
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consisting of numerous and – the better for testing the approach’s robustness – rather 

heterogeneous studies.   

A brief description of that program provides context for the challenges facing any 

rigorous yet feasible research evaluation method.  It consists of twenty-four aquacultural 

research investigations conducted under U.S. government sponsorship between 2007 and 2009 in 

11 countries.  The investigations are highly heterogeneous.  Objectives range from examining 

fish production efficiency, to water quality, human health, species development, and marketing.  

Methods include both controlled experiments and statistical surveys.  Experiment-based studies 

involve a variety of not only research treatments but of outcomes or findings in a given 

treatment.  A feed-formulation treatment, for example, can generate data on survival rate, feed 

conversion, final body weight, and flesh quality.  Statistical studies may inquire about an 

exporter’s preferred fish length, species, and quality, or the water quality in an estuary.  The 

investigations were conducted in a variety of technological and cultural settings across the globe.  

The knowledge metric employed in assessing these projects must be flexible enough to 

accommodate such variety, yet permit pooling into a single econometric model of the 

associations between knowledge-gained and resource-expended.  In particular, it must overcome 

the data and conceptual problems of distinguishing program influences from other factors 

affecting the fish-farm or training setting.  Much of our effort therefore was devoted to dealing 

with, and taking advantage of, cross-study heterogeneity. 

Bayesian Measure of Scientific Knowledge 

 

A knowledge metric accounting adequately for the studies’ discoveries must satisfy at 

least three requirements.  It must be: (a) comparable across the studies investigated; (b) ex ante 

in nature; and (c) reflective of the knowledge provided by both research “failures” and 
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“successes.”  The first or cross-study comparability criterion can be achieved by expressing the 

metric in, for example, outcome percentage changes rather than level changes.  Criterion (b) is 

essential for the metric's usefulness in research planning as well as evaluation, and requires we 

cast the metric in terms of the information the study is expected to generate.  Criterion (c) is 

important because some studies fail in the sense that the hypothesized improvement – a better 

water purification scheme or feed ration, say – does not materialize.  The failure does not, 

however, imply that expenditures have been wasted:  the disappointment was valuable in 

pointing to more fruitful research directions (CGIAR Science Council 2009).  In other words, the 

study was a success insofar as it updated our knowledge of the probabilities of management 

outcomes, expressed as a shifting or narrowing of the probability distribution of those outcomes 

in the presence of alternative treatments.  Our research discovery assessment will consist in 

comparing these outcome distribution changes with the investigation inputs – such as 

expenditures, human capital, and effort – that have made the changes possible. 

Production or Distance Function Approach 

To compare outputs with inputs in this way, we regard each evaluated study as a 

production unit that uses inputs like money and personnel to produce discoveries (Buccola, 

Ervin, and Yang 2009; Xia and Buccola 2005).  Every experiment-type study examines several 

alternative treatments, and every survey-type study examines several survey respondent sub-

groups.  Furthermore, a given experimental treatment gives rise to a multitude of findings or 

outcomes such as weight gain and feed/gain ratio, and a given survey involves a variety of 

questions.  For each of these two reasons, we are able to examine a large number of research 

input-output combinations, allowing strong statistical inferences about research program 

management success.  
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A production function approach to research discovery assessment may be represented as 

 

(1) 1 2( ) ( , , .... , )IK f f X X X X  

 

where K is a measure of the knowledge discovered in the investigation and X 1 2( , ,X X

.... , )IX  is the vector of the study’s I inputs.  Equation (1) becomes a distance function upon 

appropriate restrictions.  We focus on the manner in which the before-study ("prior") and after-

study ("posterior") probabilities of outcomes K – like mortality rate – are obtained.  Well-

developed methods are available for eliciting investigators’ prior probabilities of their 

discoveries (Stael von Holstein 1970).  The corresponding posterior probabilities are obtained 

from the investigation's statistical results, in the form either of analysis-of-variance results or 

statistical means and variances.  Bayesian methods are employed to update such probabilities as 

the investigation proceeds (Schimmelpfennig and Norton 2003).  If Y is the percentage 

improvement in a study outcome such as pond quality, and Z the experimental performance 

(sample information) of the pond-cleaning technology the researchers are studying, the 

likelihood that outcome Z will occur depends on study inputs X and on random events ; that is, 

( , )Z Z  X .  Bayes Theorem says the probability the investigator assigns to a particular pond-

quality improvement is, once the experiments have been completed,  

(2) [ | ( , )] ( ) [ ( , ) | ]p Y Z p Y p Z Y  X X  

where ( )p Y  is the scientist’s prior estimate of the chances that pond-quality Y will occur.   

 

 Equation (2) provides the very research knowledge measure K we seek.  To see this, 

suppose an oyster producer is faced – in the presence of her present oyster management practices 

X – with a decision d about how many oysters to promise to deliver next month at quality grade 

A.  If she later delivers them at lower than the promised grade, her quality reputation will suffer; 
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if at higher than the promised grade, she will not be prepared to market them at the 

proportionately higher price.  Her utility, that is, rises with her accuracy in predicting quality 

grade.  Oyster management research improves such prediction accuracy, so that her marketing 

decisions can be based on posterior probability (  | ) p Y Z rather than prior probability ( )p Y .  

That gain is reflected in the value of sample (research-produced information Z (Winkler 1972), 

namely the very knowledge measure we seek:   

(3) ( , ) { [ | ( , )]} { [ | ( , )]} ( , )K VSI d Z E U d Z E U d Z f        X X X  

Here, d  is the optimal decision in the presence of  prior information only, d  is the optimal 

decision in the presence of both the sample Z and prior information,  represents random 

unobservable study inputs,  ( )Z X indicates Z's dependence on research inputs X, and f is the 

knowledge production function.  Equation (3) shows that the value of sample information created 

by the research study is the disutility the fish farmer suffers if deprived of the research study.   

Functional Form 

A number of functional forms are available for specifying fish-farmer utility U in (3).  

We adopt here the mean absolute deviation (MAD) form ( , )U d Y  | |Y d     in which utility 

is proportionate to the absolute difference between a random outcome and its prediction (Robert 

2001).  In the present context it carries two assumptions:  (a) the farmer loses as much utility 

when fish quality turns out to be a given amount below his quality prediction as it does when it 

turns out to be a given amount above; and (b) that loss is proportionate to the difference between 

the predicted and actual quality.  The realism of these assumptions might be greater for some 

outcomes than for others. 

 With the MAD functional form, knowledge equation (3) becomes 
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(4) | | | | ( , )i PR i PO

i iPO PO

K Y M Y M f 
   

       
   
  X  

where PRM  is the mean of the prior probability distribution ( )p Y of Y, and POM
 
is the mean of 

the posterior distribution [ ( , ) | ]p Z YX .  The first middle term in equation (5) is the mean 

absolute deviation of a sample fish-quality observation from the pre-research quality prediction, 

namely PRd M  .  The second middle term is the mean absolute deviation of an observation 

from the post-research prediction POd M 
 
(Y’s sample mean).  In the present analysis, an 

AquaFish investigation’s knowledge output is modeled as the difference between these two 

farmer risks, each computed from the post-research probability distribution of quality outcomes.   

 Numerical decomposition shows (4) can, with a high degree (
2 0.97R  ) of accuracy, be 

expressed as  

 

(5)     1 2ln ln | | lnPR PO POK A a M M a STD     

 

where A , 1a , and 2a  are estimated constants and POSTD  is the standard deviation of the post-

research fish quality distribution.  That is, a research study’s information contribution depends 

separately on: (i) the absolute difference between the pre- and post-research estimate of expected 

output (the study-produced absolute shift in the output expectation and hence the study’s  mean 

surprise), and (ii) the post-research sample estimate of the standard deviation of outcomes (the 

study’s predictive success and hence accuracy).  This decomposition allows us much flexibility 

in examining the impacts of study inputs X on knowledge output K, for it permits us to 

distinguish between how those inputs affect the shift in the outcome forecast as well as the 

accuracy of that forecast.  Mean surprise and accuracy are, that is, separate aspects of a study’s 
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forecast effectiveness.  Mean surprise tells us how close the average dart is to the bulls eye; 

accuracy tells us how close the darts are to one another. 

 Expressions  ln | |PR POM M and  ln POSTD on the right-hand-side of (5) were 

estimated – for each research treatment, outcome, and survey question – by taking 50 random 

draws of each the two parenthesized expressions in the middle of (4) and using them to compute

PRM , POM , and POSTD .  Because outcomes iY in the studies we examined are expressed in a 

variety of units (kilograms per hectare, micrograms of oxygen per liter of water, and so forth), 

we divide each by the mean of the 50 outcomes drawn.   Each outcome thus is equivalently 

expressed as its percent deviation from its own posterior mean.  Thus also, this normalization 

reduces posterior mean POM  to 1.0 in each experimental treatment, outcome, and survey 

question, so that PRM  is expressed as a proportion of POM . 

Estimation Methods 

 

Data required for constructing knowledge output measures K and input measures X were 

obtained from the key study scientists.  The scientist in an experiment-type investigation is asked 

– for each treatment and each outcome of that treatment – to state:   

(i) her prior or pre-study probability Lp , Mp , Hp  that each of three selected (L, M, H) 

experimental outcome levels would be attained; and (ii) the corresponding posterior probabilities 

as represented by the outcome’s mean and standard deviation in the ANOVA results.  The 

scientist in a survey-type investigation is asked – for each major survey question – to state:  (i) 

his prior probability Lp , Mp , Hp  that he would obtain each of three selected (L, M, H) survey 

answer levels; and (ii) the corresponding posterior probabilities as represented by the mean and 

standard deviation of the respondent’s answers to that question.   
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Knowledge Inputs 

 Study inputs included researchers' salaries and wages, travel, research materials such as 

feeds and medicines, training materials, student-workers’ tuitions, and publication expenses.  At 

a more aggregate level, information also was available on materials and equipment and 

administrative overhead.  Human capital – the knowledge and skills embedded in the 

investigators themselves – is to some degree reflected in researchers' salaries.  But such 

reflections are imperfect and usefully supplemented by, for example, information about the 

research team’s academic rank and experience.  More expenditure or human capital would 

provide greater scope for solving the research problem and hence presumably boost knowledge 

production K.   

 Experimental approaches may be more or less difficult to plan and manage than survey 

studies are, so our expectations of experimental controls’ impacts on knowledge production are 

somewhat ambiguous also.  One might, however, at least expect controlled experiments to bring 

lower sample variances than survey studies do, since experimental controls are designed for very 

purpose of reducing random noise.  A study’s outcome dimensions likely differ among one 

another in understandability or accessibility – fish weight-gain perhaps being more difficult to 

measure than water oxygen level.  Similarly, an investigation’s topic area category may 

influence research difficulty insofar as some topics may be less understood and more expensive 

to address than are others.  But we do not have strong prior expectations for such outcome-wise 

or topic-area-wise effects.   

 Finally, public infrastructure can influence knowledge output in many ways.  Distance 

and the difficulty of travel to study site consume resources that otherwise could be expended on 

knowledge-generation at the site.  Climate, culture, or other geographic factors can have their 
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own impacts on research success, for example when traditions among a surveyed group of 

scientists influence the types of information they are willing to reveal.  Data collection ran from 

October 2010 to December 2011. 

Model Specifications 

 

 Indexing knowledge-production model (1) in terms of the types of research inputs 

discussed above gives 

(6)   ( ) ( , , , )ijk i i ijk iK f f X E H T I    

in which 

iE  is the vector of expenditures on the i
th

 investigation, in dollars per biennium; 

iH  is the vector of human capital variables in the i
th 

investigation; 

ijkT  is the vector of research problem types in the j
th

 treatment and k
th

 outcome of the i
th

 

investigation; 

iI is the vector of public infrastructure variables in the i
th

 investigation. 

 The correspondingly indexed form of equation (5) is 

(7)
 
     1 2ln ln | | lnijk PR PO POijk ijk

K A a M M a STD     

in which   

(8)    1 1,ln | | ( , )PR PO ijk ijkijk
M M f e  X  

(9)    2 2,ln ( , )ijk ijkijk
STD f e X

 

We therefore are able to estimate the latter two equations separately, and so can observe how 

research inputs affect research distribution shift or mean surprise (8) separately from how they 

affect research accuracy (9).  We then combine them, via equation (5) and its 1  and 2  
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parameter estimates, to conclude how research inputs affect total knowledge output – the 

expected value of the research program's sample information. 

Results 

 

Sample size was 415.  In the typical study, research treatment, and outcome, the 

researcher’s prior outcome expectation was 0.224 (22.4%) higher or lower than the mean 

outcome in the subsequent experiment or survey.  That is, the researcher’s expectations tended to 

be 22% “off” what eventually happened, creating a 22% mean surprise.  The associated standard 

deviation of 0.278 is higher or lower than the mean, implying substantial variation in how far a 

researcher’s prior expectations missed the eventual mark.  The distribution of these absolute 

surprises was skewed strongly to the right: mean surprises tended to cluster just above zero, the 

successively larger ones being continuously less frequent. 

The shape of the sample distribution of posterior standard deviations – measuring the 

spread or inaccuracy of research outcomes around their experimental or survey means – was 

similar to the distribution of mean shifts or surprises.  Average experimental or survey outcome 

was 0.38 (38 percent) above or below its own mean.  The variation of this research accuracy 

across studies, treatments, and types of outcome was, at 0.653, nearly twice (1.718) as high as 

the sample-mean accuracy.  And the distribution of these accuracies across studies and outcomes 

was again strongly positively skewed.  They bunched just to the right of zero – where standard 

deviations are low – the successively larger ones (with higher standard deviations and hence 

more inaccurate) being continuously less frequent.  Because our measure of knowledge-gained is 

a weighted sum of mean absolute surprise and variance, these coefficients of variation are quite 

adequate for examining the factors affecting scientific knowledge creation. 
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The average research team consisted of 13 individuals, the average investigator 33 years 

old with 17 years of education.  Sixty-eight percent of research outcomes pertained to fish 

production (growth, feeding, and mortality), 18% to water quality, and 14% to fish marketing 

strategies.  Average distance to the experiment or survey site was 843 kilometers.  Two-thirds of 

scientists’ transportation to research site involved largely auto or bus, and one-third largely 

walking.  Sample variation of most of these research inputs is adequate for regression inference.  

For example, coefficients of variation of research outcome dimensions are mostly above one.  

Few of these variables are pairwise-correlated to the degree that would create inference 

problems. 

Factors Affecting Output: Mean Surprise 

Estimates of research surprise equation (8), using the 2007 – 2009 sample of 415 

observations, are shown in table 1.  Twenty-eight outlier observations were dropped from the 

original 443 observations on account of their excessive influence on regression estimates.  

Column (2) gives the coefficient estimates and column (4) the t-statistics.  Because both research 

surprise and the continuous research inputs are expressed in logs, coefficients of these inputs are 

"output elasticities," the percent increase in surprise generated by a one-percent rise in the 

research input.  The coefficient of the analytical-approach variable in table 1 instead is the 

percent difference in mean surprise between the indicated group and the base group.   

In the interests of space, we report here only the results for the team-size, team-education, 

distance-to-study-site, and analytical-approach variables.  Expanding a study's size by increasing 

the number of its full-time-equivalent investigators statistically significantly shifts the location of 

the research outcome’s probability distribution.  In particular, a one-percent FTE boost lifts mean 

surprise by 0.206 percent.  The bigger the team, that is, the greater the mean surprise expected.  
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On the other hand, the team’s aggregate education does not significantly affect mean surprise at 

all (t = - 0.264).  Perhaps it is the team leader’s rather than junior members’ skills that materially 

influence a distribution shift.  In ways, that is, that outcome accuracy does not, the gap between 

the prior and posterior expectation of a study outcome represents a fundamental shift in scientific 

understanding of the issue at hand.  That gap depends on insights into how best to frame the 

research question and controls, insights that only the research leader ordinarily can provide.  

Finally, average distance to research site does affect the mean surprise a study generates: a one-

percent greater travel distance reduces surprise by 0.107 percent, all else constant.  This effect, 

too, is strongly significant (t = - 4.38).  And, although modest in magnitude, it is consistent with 

our expectation that travel time cuts down on the time and energy available to the leader and 

team for creativity and innovation. 

Studies consisting of controlled experiments bring, all else equal, an average 105 percent 

less mean surprise than do studies consisting of statistical surveys.  This result is rather expected.  

The possibility of analyzing a problem with experimental controls is normally encountered 

where the scientist is relatively familiar with the problem's stochastic environment.  Such 

familiarity in turn implies one would not normally expect the research to greatly change the 

investigator’s expectations of a study outcome.  Survey methods, in contrast, usually are more 

exploratory, ones investigators use when the environment is relatively unknown.  Surveyors’ 

expectations therefore would tend to be weak, a situation conducive to marked changes in them 

as the study proceeds. 

Research mean-surprise model R-square is 0.26.  We are able to explain about one-

quarter of the variation across treatments, outcomes, and studies in research mean surprise.  The 

modesty of this proportion is to be expected.  The investigator insights needed to fundamentally 
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shift our understanding of a research problem are relatively ineffable and not easily explained 

with measurable inputs.  That is not, as we shall see next, true for the research accuracy 

dimension. 

Factors Affecting Output: Statistical Accuracy 

 

Consider now (table 2) the corresponding estimates of research accuracy equation (9), 

showing research inputs’ effects on the standard deviations (imprecisions) of the experimental or 

survey-question outcomes.  Factors with negative effects in table 2 are those contributing 

positively to precision and thus, by way of equation (7), to scientific knowledge.  

The scale of the research investigation – represented by team FTE – has an unexpected 

precision effect, although its weak statistical confidence (t = 1.32) serves to temper it.  A one 

percent FTE rise brings 0.11% lower predictive accuracy in an investigation’s experiments and 

surveys.  Negative output elasticities of this sort typically are explained in the economics 

literature as a crowding effect.  Depending on current team size and team-leader management 

skill, boosting team size can complicate the leader’s management burden more than it frees his 

time for strategic thinking.  Why this phenomenon holds here for the production of outcome 

accuracy and not (as above) for the production of mean surprise is unclear. 

The research team’s education has an especially powerful impact – indeed the only one in 

this study with an elasticity exceeding unity – on the accuracy of the team’s research findings.  A 

one-percent rise in the team-members’ average formal education reduces outcome standard 

deviation by 4.26%.  The intuitive nature of this result is clear: better-educated teams are better 

able to maintain the experimental controls which restrict research outcomes’ random variations.  

At the ground level, these controls usually are in the hands of the team’s most junior members, 

whose educational preparation therefore becomes crucial for experimental accuracy.  In earlier 
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runs, collaborator (for example cooperating fisher) education had no detectable influence on 

accuracy, perhaps because it is the collaborator’s experience rather than education that better 

predicts her usefulness.  

The influence on research accuracy of mean distance to study site in table 2 is consistent 

with distance’s influence on research mean surprise:  greater travel distance leads to greater 

sampling variance and hence to lower research accuracy.  Physical distance presumably inhibits 

site visits and hence study monitoring.  On the other hand the effect is, along with modest 

statistical significance, rather small.  A one-percent rise in travel distance impairs accuracy by 

about 0.03 percent.   

The scientist’s choice between an experimental and survey research design has a much 

more profound research-accuracy implication than distance has.  Experimental studies in the 

present dataset provide, all other factors constant, 75% lower outcome variances and thus more 

accurate study results than do survey investigations.  That effect has extraordinarily high 

statistical significance.  It also is highly intuitive:  as we have noted above, experimental controls 

are imposed for the very purpose of reducing study outcome variances below those achievable 

when only statistical controls are employed.   

Research accuracy model 2R  is 0.44.  We are able to explain about one-half the 

statistical-accuracy variation in our sample of scientific studies, treatments, and outcomes. 

Implications for Knowledge Production 

We now aggregate the table 1 and 2 estimates, by way of equation (7), to see how 

research inputs influence knowledge production itself.  Results of our equation (7) regression on 

the sample data are: 
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(10) ln K  =  - 1.188   +   1.76  ln | |PR POM M   -   0.71  ln POSTD     2 0.97R   

 (-30.97)               (122.08)       (-50.79)     

in which the left-hand term is the log of knowledge output, the second right-hand term the log of 

the mean difference between prior expectation sand mean study findings, and the final term the 

log of the standard deviation of those findings.  Numbers in parentheses are t-statistics.  Mean 

surprise is a positive element, and standard deviation (the negative of accuracy) a negative 

element, of knowledge.  Given the MAD utility functional form (4) assumed, mean surprise is – 

at the margin – substantially more important to knowledge-creation than accuracy is.  In 

particular, equation (10) shows mean surprise’s knowledge weight is 1.76 / 0.71 = 2.5 times 

greater than accuracy’s knowledge weight.  Using the 1.76 and -0.71 weights together with 

tables 1 and 2, we compute in table 3 each research input’s net knowledge effect.  For purposes 

of the table 3 calculations, we have set to zero any input effect whose estimated absolute t-value 

in tables 1 and 2 is below unity. 

By way of its effect on mean surprise alone, the impact on net knowledge of expanding 

research-team FTE in table 3 is (1.76) (0.206) = 0.363.  That is, by virtue of its boost to mean 

surprise, expanding team research time by one percent enhances knowledge by 0.36%.  By virtue 

of the expansion’s impact on research findings’ sample variance, it reduces knowledge by (-0.71) 

(0.112) = - 0.079%.  Thus, a one-percent team expansion lifts new knowledge by a net (0.363 – 

0.079) = 0.284%.  That is, scientist effort has a positive but modest total effect on scientific 

knowledge despite its questionably positive effect  

(table 2) on research inaccuracy.  

Because team education’s influence on mean surprise is highly nonsignificant  
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(table 1), its impact on net knowledge is identical to its impact on statistical accuracy alone, 

weighted by accuracy’s incremental weight (- 0.71) in knowledge creation.  Thus, a one percent 

education improvement lifts knowledge creation in table 3 by (- 0.71) (- 4.263) = 3.026%.  

Finally, by virtue of its effect on mean surprise, reducing the physical distance from station to 

study site by one percent lifts knowledge-gained – that is, exacerbating the distance reduces 

knowledge-gained – by (1.76) (0.107) = 0.189%.  By way of its impact on sample variance, 

distance reduction lifts knowledge-gained by (- 0.71) (- 0.033) = 0.023%.  Its net knowledge 

boost is therefore (0.189 + 0.023)  = 0.212%.  Distance’s mean-surprise and accuracy effects 

here work in the same direction: reducing travel distance helps create both more mean 

distribution shift and more research accuracy. 

Returns to Scale 

It is useful to view research inputs’ scientific knowledge effects in terms of returns to 

scale.  Because team-size, education, and travel-distance-reduction are continuous inputs in a 

research enterprise, we can use them to compute the returns to scale in the production of mean 

research surprise.  In particular, the table 1 sum of the mean-surprise elasticities with respect to 

these three factors is (ignoring education’s statistically highly nonsignificant effect), 0.206 + 0 

+0.107 = 0.313.  Returns-to-scale below unity imply productive efficiency declines rapidly as 

enterprise size is expanded.  Thus, scaling the team’s labor time and education upward and travel 

distance downward would, while bringing more average surprise, do so with rapidly declining 

input-efficiency.  Such decline reflects, we reason, the poor replicability of the lead scientist’s 

time and creative talent, which presumably are responsible for most of a research study’s mean 

surprise. 
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In contrast, scale returns in the production of research accuracy are, from table 2 and 

again reversing signs to signify that a standard deviation decline is an accuracy improvement, - 

0.112 + 4.263 + 0.033 = 4.184.  This result implies increasing returns to scale: augmenting team 

FTE and education and reducing mean travel distance in the same proportion would boost 

statistical accuracy by four times that proportion.  At least in the range of study sizes examined 

here, there appears, that is, to be no limit to the increased statistical accuracy achievable by 

expanding study sizes, and with that expansion the treatment and survey replication that 

improves statistical fit. 

Finally, weighting the mean-surprise elasticities by their 1.76 knowledge weight and 

accuracy elasticities by their – 0.71 weight gives a net return-to-scale of 0.284 + 3.026 + 0.212 = 

3.522.  Returns-to-scale therefore appear to be strongly increasing, implying increasing 

productive efficiency as investigation size grows.  Such high scale returns are remarkable 

because the research outcome dimensions and topic-area categories for which we control in the 

present analysis serve to restrict what the investigator examines, imposing a constraint and hence 

limiting the possibilities for efficient scaling-up of research effort.  However, the increasing 

returns are due solely to research inputs’ very strong accuracy effects, compensating heavily for 

their rather moderate impacts on scientific mean surprise. 
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Table 1.  Research-Input Effects on the Absolute Difference Between Prior and 

Posterior Mean Finding (Mean Surprise), Selected Aquacultural Research 

Studies, 2007 – 2009. 

 

 

 

Research Input  Estimate Standard Error t-value 

    

Intercept 0.171 3.790 0.045 

    

Continuous Variables    

Team FTE 0.206 0.097 2.115 

Team Mean Education -0.353 1.333 -0.264 

Mean Distance to Study Site -0.107 0.025 -4.380 

    

Analytical Approach    

Experiment vs Survey -1.051 0.248 -4.244 

    (Base Group:  Statistical Surveys)    

    

    

 

Notes 

 

Dependent variable:  Absolute difference between prior expectation and posterior sample mean of 

experimental finding or survey response 

 

Residual standard error:    1.091 

Sample size:     415 

Multiple R-square:     0.26 
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Table 2.   Research-Input Effects on the Standard Deviation (Inaccuracy) of Research 

Findings, Selected Aquacultural Research Studies, 2007 – 2009. 

 

 

 

Research Input Estimate Standard Error t-value 

    

Intercept 11.543 3.302 3.496 

    

Continuous Variables    

Team FTE 0.112 0.085 1.319 

Team Mean Education -4.263 1.161 -3.671 

Mean Distance to Study Site 0.033 0.021 1.565 

    

Analytical Approach    

Experiment vs Survey -0.752 0.216 -3.485 

   (Base Group:  Statistical Surveys)    

    

    

 

 

Notes 

 

Dependent Variable:  Standard deviation of experimental finding or survey response 

Residual standard error:    0.9508 

Sample size:     415 

Multiple R-square:     0.44 
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Table 3.   Decomposition of Research Inputs’ Net Knowledge Effects, Selected 

Aquacultural Research Studies, 2007 – 2009. 

 

 

 

Research Input 

Knowledge 

Contribution via 

Research Mean 

Surprise 

Knowledge 

Contribution via 

Research Accuracy 

Total Knowledge 

Contribution 

    
    

Continuous Variables 
   

Team FTE 0.363 -0.079  0.284 

Team Mean Education 0 3.026 3.026 

Mean Distance to Study Site* 0.189 0.023 0.212 

 
   

Analytical Approach 
   

Experiments vs Surveys -1.854 0.534 -1.32 

   (Base Group: Statistical Surveys) 
   

 
   

 

Notes:  Contributions in the first column are elasticities in table 1 multiplied by mean surprise’s marginal 

positive contribution (1.76) to scientific knowledge.  Contributions in the second column are elasticities in 

table 2 multiplied by standard deviation’s marginal negative contribution (- 0.71) to scientific knowledge.  

Numbers for the continuous inputs are percentage changes induced by a one-percent change in the indicated 

input.  Those for categorical variables are percent changes associated with switching from the base group to the 

group indicated.     

 

*  Mean distance effects in table 3 refer to a reduction in mean distance. 

 


